like structures of $\mathrm{Br}-\mathrm{C} \equiv \mathrm{N}$ (Geller \& Schawlow, 1955) with $\mathrm{Br} \cdots \mathrm{N}=2.87 \AA$ and $\mathrm{Br}-\mathrm{C} \equiv \mathrm{C}-\mathrm{C} \equiv \mathrm{N}$ (Bjorvatten, 1968) with $\mathrm{Br} \cdots \mathrm{N}=2 \cdot 96 \AA$. Other examples of such weak $\mathrm{Br} \cdots \mathrm{N}$ interactions are found in: 2,4-dibromodiazoaminobenzene (Omel'Chanko \& Kondrashev, 1966), $\mathrm{Br} \cdots \mathrm{N}=3 \cdot 22 \AA, \mathrm{C}-\mathrm{Br} \cdots \mathrm{N}=163^{\circ}$; bromotricyanomethane (Witt, Britton \& Mahon, 1972) $\mathrm{Br} \cdots \mathrm{N}=3.03 \AA, \mathrm{C}-\mathrm{Br} \cdots \mathrm{N}=163^{\circ}$; and $2,4,6-$ tribromobenzonitrile (Carter \& Britton, 1972), $\mathrm{Br} \cdots \mathrm{N}=3.06 \AA, \mathrm{C}-\mathrm{Br} \cdots \mathrm{N}=170^{\circ}$ (angles computed from published coordinates).

References

Biorvatien, T. (1968). Acta Chem. Scand. 22, 410-420.
Busing, W. R., Martin, K. O. \& Levy, H. A. (1962). ORFLS. Report ORNL-TM-305. Oak Ridge National Laboratory, Oak Ridge, Tennessee.

Carter, V. B. \& Britton, D. (1972). Acta Cryst. B28, $945-$ 950.

Geller, S. \& Schawlow, A. C. (1955). J. Chem. Phys. 23, 779-783.
Hughes, E. W. (1941). J. Amer. Chem. Soc. 63, 1737-1752.
International Tables for X-ray Crystallography (1959). Vol. II. p. 295. Birmingham: Kynoch Press.

Mukherjee, T. K. (1969). J. Phys. Chem. 73, 4381-4382.
Omel'Chanko, Yu. A. \& Kondrashev, Yu. D. (1966). Sov. Phys. Crystallogr. 10, 690-693.
Phillips, D. C. (1954). Acta Cryst. 7, 746-751.
Schomaker, V., Waser, J., Marsh, R. E. \& Bergman, G. (1959). Acta Cryst. 12, 600-604.

Silverman, J., Krukonis, A. P. \& Yannoni, N. F. (1967). Acta Cryst. 23, 1057-1063.
Silverman, J., Krukonis, A. P. \& Yannoni, N. F. (1968). Acta Cryst. B24, 1481-1488.
Witt, J. R., Britton, D. \& Mahon, C. (1972). Acta Cryst. B28, 950-955.

The Crystal Structure of Meionite

By S. B. Lin and B. J. Burley
Department of Geology, McMaster University, Hamilton, Ontario, Canada

(Received 17 April 1973; accepted 9 May 1973)

Abstract

Meionite with cell formula $\left(\mathrm{Ca}_{7.32} \mathrm{Na}_{0.39} \mathrm{~K}_{0.19}\right.$ $\left.\mathrm{Fe}_{0.038} \mathrm{Mg}_{0.004} \mathrm{Sr}_{0.015}\right)\left(\mathrm{Si}_{12 \cdot 41} \mathrm{Al}_{11.33}\right) \mathrm{O}_{48 \cdot 51}\left[\mathrm{Cl}_{0.053}\left(\mathrm{SO}_{4}\right)\right.$ $\left.{ }_{0.053}\left(\mathrm{CO}_{3}\right)_{1.895}\right]$ is tetragonal, $P 4_{2} / n$ rather than $I 4 / m$, $a=12 \cdot 194$ (4), $c=7.557$ (4) $\AA, D_{x}=2 \cdot 78 \mathrm{~g} \mathrm{~cm}^{-3}$. This mineral is from Monte Somma, Italy. The structure is similar to that of marialite but with significant differences in atomic coordinates and Al site occupancies. The CO_{3} groups are essentially disordered on the (001) plane and displaced from the site $0,0,0$. The Ca ion is 8 -coordinated rather than 6 -coordinated.

Introduction. The intensities and cell dimensions were measured from a transparent, colourless crystal about 0.4 mm wide, using the integrating precession camera (Zr-filtered Mo $K \alpha$ radiation). 688 reflexions were collected, of which 166 had an intensity less than the minimum observable value and were assigned a value of $I_{\text {min }} / 3$ (Hamilton, 1955). Lorentz and polarization corrections were applied. The systematic absences were $h k l$ with $h+k+l$ odd, $h k 0$ with $h+k$ odd and $00 l$ with l odd. The apparent space groups is $I 4 / m$ but the most probable space group of this impure meionite should be $P 4_{2} / n$ (Lin, 1971; Lin \& Burley, 1971, 1973b). The trial-structure atomic parameters correspond to those of marialite (Lin \& Burley, 1973a). Full-matrix leastsquare refinement with isotropic temperature factors and Cruickshank's weighting scheme gave a residual [$\left.R=\Sigma\left(\left|F_{o}\right|-\left|F_{c}\right|\right) / \Sigma\left|F_{o}\right|\right]$ of 0.079 first based on $I 4 / m$ and 0.072 subsequently based on $P 4_{2} / n$. Those unob-
served reflexions consistent with $P 4_{2} / n$ were given a much smaller weight inferred from the relationship between the intensity of $h+k+l$ odd reflexions and composition of scapolites (Lin \& Burley 1971, 1973b). The refined parameters are listed in Table 1. A table of $F_{\text {cal }}$ and $F_{\text {obs }}$ values is obtainable.* The bond lengths and angles are in Tables 2 and 3.

Discussion. The structure is similar to that of marialite (Lin \& Burley, 1973a) but some significant differences mainly arising from the chemical difference are observed. Ignoring the difference in z coordinates, the structure can be considered as being derived from the marialite structure by rotating (type 1) tetrahedra rings counter-clockwise while rotating (type 2) tetrahedra rings clockwise. Thus the oval-shaped cation channels relatively increase their long diameter and decrease the short one. This meionite is the most $\mathrm{Ca}, \mathrm{CO}_{3}$-rich scapolite found in nature. The role of the CO_{3} group in this meionite is similar to that described in mizzonite (Papike \& Stephenson, 1966). The CO_{3} group is positionally disordered maily on the $x y$ plane, though it could tilt slightly from this plane, as indicated by the very high thermal factor and z coordinates of $\mathrm{O}(7)$.

This table has been deposited with the National Lending Library, England, as Supplementary Publication No. SUP 30133 (11pp.). Copies may be obtained through the Executive Secretary, International Union of Crystallography, 13White Friars, Chester CH11NZ, England.

This hypothesis is also favoured by the high thermal factor of the C atom, the square plateau of electron density around the $0,0,0$ site, and the slightly shorter $\mathrm{C}-\mathrm{O}$ bond. The Ca ion is 8 -coordinated rather than 6 -

Table 1. Atomic coordinates and temperature factors of meionite ($93 \% \mathrm{Me}, \mathrm{Mt}$. Somma, Italy)
Standard deviations, σ, given in parentheses. The comparison for marialite is also given.

Atom		$\stackrel{1}{\text { Meionite }}$ ($P 4_{2} / n$)	\qquad	$\stackrel{3}{\substack{\text { Marialite* } \\\left(P 4_{2} / n\right)}}$
	x	0.3565 (2)	$0 \cdot 3565$ (2)	$0 \cdot 3659$ (2)
$(\mathrm{Ca}, \mathrm{Na}$,	y	0.2807 (2)	$0 \cdot 2809$ (2)	$0 \cdot 2884$ (3)
K) (1)	z	$0 \cdot 5001$ (3)	$\frac{1}{2}$	$0 \cdot 5064$ (4)
	B	1.79 (4)	1.54 (5)	$2 \cdot 68$ (6)
$\begin{aligned} & (\mathrm{C}, \mathrm{Cl} \\ & \mathrm{S})(1) \end{aligned}$	x	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$
	y	2		$\frac{1}{2}$
	B			
	B	1.97 (29)	$1 \cdot 36$ (40)	3.85 (12)
$\underset{(1)}{(\mathrm{Si}, \mathrm{Al})}$	x	$0 \cdot 3395$ (2)	$0 \cdot 3395$ (3)	0.3390 (1)
	y	$0 \cdot 4074$ (2)	$0 \cdot 4071$ (3)	$0 \cdot 4100$ (1)
	z	$1 \cdot 0000$ (3)	1	$0 \cdot 9989$ (3)
	B	0.47 (4)	$0 \cdot 29$ (5)	$0 \cdot 69$ (3)
$\underset{(2)}{(\mathrm{Si}, \mathrm{Al})}$	x	$0 \cdot 6599$ (2)	$0 \cdot 6598$ (2)	$0 \cdot 6621$ (2)
	y	0.9129 (2)	0.9134 (2)	$0 \cdot 9152$ (2)
	z	$0 \cdot 7930$ (3)	$0 \cdot 7934$ (2)	$0 \cdot 7956$ (2)
	B	0.51 (5)	$0 \cdot 32$ (3)	$0 \cdot 79$ (4)
$\underset{(3)}{(\mathrm{Si}, \mathrm{Al})}$	x	$0 \cdot 4130$ (2)		$0 \cdot 4145$ (2)
	y	0.8401 (2)		$0 \cdot 8368$ (2)
	z	0.7072 (3)		0.7085 (2)
	B	0.51 (5)		$0 \cdot 63$ (4)
O(1)	x	0.4593 (5)	0.4591 (7)	$0 \cdot 4574$ (4)
	y	$0 \cdot 3475$ (5)	$0 \cdot 3484$ (7)	$0 \cdot 3511$ (4)
	z	0.9999 (10)	1	$1 \cdot 0011$ (7)
	B	1.33 (9)	1.13(14)	1.39 (8)
$\mathrm{O}(2)$	x	$0 \cdot 6871$ (4)	$0 \cdot 6873$ (6)	$0 \cdot 6939$ (4)
	y	0.8732 (5)	$0 \cdot 8726$ (7)	$0 \cdot 8797$ (4)
	z	0.9999 (9)	1	$1 \cdot 0048$ (7)
	B	0.98 (8)	0.57 (12)	$1 \cdot 25$ (7)
O(3)	x	0.3491 (5)	0.3482 (4)	$0 \cdot 3486$ (6)
	y	0.9495 (5)	0.9510 (4)	0.9448 (5)
		0.7941 (9)	0.7965 (6)	$0 \cdot 7898$ (6)
	B	1.09 (10)	$0 \cdot 84$ (9)	1.48 (10)
O(4)	x	0.5504 (5)		0.5499 (5)
	y	$0 \cdot 8491$ (5)		$0 \cdot 8475$ (6)
	z	$0 \cdot 7055$ (9)		$0 \cdot 7163$ (6)
	B	$1 \cdot 11$ (10)		1.49 (10)
O(5)	x	$0 \cdot 2674$ (5)	$0 \cdot 2669$ (4)	$0 \cdot 2706$ (5)
	y	0.3645 (6)	$0 \cdot 3647$ (4)	$0 \cdot 3699$ (5)
	2	$0 \cdot 8245$ (7)	$0 \cdot 8293$ (7)	$0 \cdot 8277$ (6)
	B	1.42 (12)	$1 \cdot 10$ (9)	1.30 (9)
O(6)	x	$0 \cdot 3643$ (6)		$0 \cdot 3710$ (6)
	y	0.7345 (5)		$0 \cdot 7282$ (6)
	z	$0 \cdot 8269$ (7)		$0 \cdot 8270$ (7)
	B	1.48 (12)		1.47 (10)
O(7)	x	0.3995 (16)	0.3961 (16)	0.3833 (62)
	y	$0 \cdot 4865$ (16)	$0 \cdot 4822$ (19)	0.4817 (64)
	z	$0 \cdot 5001$ (25)		$0 \cdot 5012$ (101)
	B	$6 \cdot 42$ (41)	$6 \cdot 27$ (52)	4.01 (1.28)
R		7.2\%	7.9%	$7 \cdot 4 \%$

* From Lin \& Burley (1973a).
coordinated as reported by Papike \& Stephenson (1966). The main difference between the coordination of Ca in meionite and Na in marialite is that in meionite $\mathrm{O}(7)$ of the CO_{3} group is coordinated to Ca while in marialite $\mathrm{Cl}(1)$ at $0,0,0$ is coordinated to Na . This further gives rise to the differences between the x, and y coordinates of Na in marialite and those of Ca in meionite.

The assumption of $P 4_{2} / n$ for the space group of this impure meionite has developed from a consideration of the crystallography of the scapolite family as a whole (Lin \& Burley, 1971; 1973b). The structure was successfully refined in $P 4_{2} / n$ to give an R of $7 \cdot 2 \%$, which is lower than the R of 7.9% obtained in space group $I 4 / m$. Though a lower R is by no means an absolute measure of the correctness of a structure model, nevertheless, a satisfactory refinement with a lower R does tend to favour the possibility of $P 4_{2} / n$ being the real space group. The temperature factors refined in $P 4_{2} / n$ are more similar to those of other scapolites (Lin,

Table 2. Interatomic distances in meionite (93 \% Me, Monte Somma, Italy)
(a) $(\mathrm{Si}, \mathrm{Al})-\mathrm{O}$ and $\mathrm{O}-\mathrm{O}$ distances of tetrahedra (Si, Al)

tetra- hedron	T-O distances (\AA)		O-O distances (\AA)	
	Atoms	Distance	Atoms	Distance
T(1)	$\mathrm{O}(1)$	1.634 (6)	$\mathrm{O}(1)-\mathrm{O}(5)$	$2 \cdot 697$ (9)
	$\mathrm{O}(5)$	1.674 (6)	$\mathrm{O}(1)-\mathrm{O}\left(1^{\prime}\right)$	2.721 (9)
	$\mathrm{O}\left(1^{\prime}\right)$	1.628 (6)	$\mathrm{O}(1)-\mathrm{O}\left(6^{\prime}\right)$	2.709 (10)
	O(6)	1.674 (6)	$\mathrm{O}\left(1^{\prime}\right)-\mathrm{O}(5)$	$2 \cdot 707$ (10)
			$\mathrm{O}\left(1^{\prime}\right)-\mathrm{O}\left(6^{\prime}\right)$	2.709 (9)
Average			$\mathrm{O}(5)-\mathrm{O}\left(6^{\prime}\right)$	$2 \cdot 635$ (8)
		1.653 (6)		2.696 (9)
T(2)	$\mathrm{O}(2)$	1.670 (7)	$\mathrm{O}(2)-\mathrm{O}(4)$	2.796 (9)
	O(4)	1.681 (7)	$\mathrm{O}(2)-\mathrm{O}\left(3^{\prime}\right)$	2.699 (9)
	$\mathrm{O}\left(3^{\prime}\right)$	1.681 (7)	$\mathrm{O}(2)-\mathrm{O}\left(5^{\prime}\right)$	$2 \cdot 642$ (8)
	$\mathrm{O}\left(5^{\prime}\right)$	1.690 (7)	$\mathrm{O}(4)-\mathrm{O}\left(5^{\prime}\right)$	2.663 (9)
			$\mathrm{O}(4)-\mathrm{O}\left(3^{\prime}\right)$	$2 \cdot 825$ (9)
Average			$\mathrm{O}\left(3^{\prime}\right)-\mathrm{O}\left(5^{\prime}\right)$	$2 \cdot 822$ (10)
		1.681 (7)		2.741 (9)
T(3)	O(3)	1.679 (7)	$\mathrm{O}(3)-\mathrm{O}(4)$	2.824 (9)
	O(4)	1.680 (7)	$\mathrm{O}(3)-\mathrm{O}(6)$	$2 \cdot 640$ (9)
	$\mathrm{O}(6)$	1.682 (6)	$\mathrm{O}(3)-\mathrm{O}\left(2^{\prime}\right)$	2.699 (9)
	$\mathrm{O}\left(2^{\prime}\right)$	$1 \cdot 673$ (7)	$\mathrm{O}(4)-\mathrm{O}(6)$	$2 \cdot 819$ (10)
			$\mathrm{O}(4)-\mathrm{O}\left(2^{\prime}\right)$	$2 \cdot 698$ (9)
			$\mathrm{O}(6)-\mathrm{O}\left(2^{\prime}\right)$	$2 \cdot 652$ (8)
Average		$1 \cdot 679$ (7)		2.722 (9)

(b) Selected interatomic distances

Type	From	To	Multiplicity	Distance (\AA)
		$\mathrm{O}\left(2^{\prime}\right)$	1	2.353 (6)
Cation		$\mathrm{O}\left(3^{\prime}\right)$	1	$2 \cdot 493$ (7)
		$\mathrm{O} 4^{\prime}$)	1	2.490 (7)
Coordination	($\mathrm{Ca}, \mathrm{Na}, \mathrm{K}$)	$\mathrm{O}(5)$	1	$2 \cdot 870$ (6)
polyhedron		$\mathrm{O}\left(5^{\prime}\right)$	1	2.679 (7)
		$\mathrm{O}\left(6^{\prime}\right)$	1	2.655 (7)
		$\mathrm{O}\left(6^{\prime \prime}\right)$	1	2.893 (6)
		$\mathrm{O}\left(7^{\prime}\right)$	1	2.402 (20)
Anion cage	O(1)	$\mathrm{O}\left(1^{\prime}\right)$	4	$8 \cdot 480$ (10)
diagonals	O(5)	$\mathrm{O}\left(6^{\prime}\right)$	4	8.223 (8)
	O(2)	$\mathrm{O}\left(2^{\prime}\right)$	2	8.234 (8)
Carbonate group	C	O(7)	3	$1 \cdot 236$ (20)

Table 3. Interatomic angles in meionite ($93 \% \mathrm{Me}$, Monte Somma, Italy

Type	Atoms	Angle $\pm \sigma\left({ }^{\circ}\right)$
$\mathrm{O}-\mathrm{T}(1)-\mathrm{O}$ angles	$\mathrm{O}(1)-\mathrm{T}(1)-\mathrm{O}(5)$	$109 \cdot 22 \pm 0 \cdot 37$
$[\mathrm{~T}(1)$ tetrahedron]	$\mathrm{O}(1)-\mathrm{T}(1)-\mathrm{O}\left(1^{\prime}\right)$	$113 \cdot 09 \pm 0 \cdot 34$
	$\mathrm{O}(1)-\mathrm{T}(1)-\mathrm{O}\left(6^{\prime}\right)$	$109 \cdot 98 \pm 0 \cdot 37$
	$\mathrm{O}(5)-\mathrm{T}(1)-\mathrm{O}\left(1^{\prime}\right)$	$110.12 \pm 0 \cdot 39$
	$\mathrm{O}(5)-\mathrm{T}(1)-\mathrm{O}\left(6^{\prime}\right)$	$103 \cdot 79 \pm 0 \cdot 31$
	$\mathrm{O}\left(1^{\prime}\right)-\mathrm{T}(1)-\mathrm{O}\left(6^{\prime}\right)$	$110 \cdot 23 \pm 0 \cdot 39$
$\mathrm{O}-\mathrm{T}(2)-\mathrm{O}$ angles	$\mathrm{O}(2)-\mathrm{T}(2)-\mathrm{O}(4)$	$113 \cdot 06 \pm 0 \cdot 34$
$[\mathrm{~T}(2)$ tetrahedron]	$\mathrm{O}(2)-\mathrm{T}(2)-\mathrm{O}\left(3^{\prime}\right)$	$107.32 \pm 0 \cdot 33$
	$\mathrm{O}(2)-\mathrm{T}(2)-\mathrm{O}\left(5^{\prime}\right)$	$103 \cdot 66 \pm 0 \cdot 32$
	$\mathrm{O}(4)-\mathrm{T}(2)-\mathrm{O}\left(3^{\prime}\right)$	$114 \cdot 36 \pm 0 \cdot 34$
	$\mathrm{O}(4)-\mathrm{T}(2)-\mathrm{O}\left(5^{\prime}\right)$	$104 \cdot 33 \pm 0 \cdot 34$
	$\mathrm{O}\left(3^{\prime}\right)-\mathrm{T}(2)-\mathrm{O}\left(5^{\prime}\right)$	$113 \cdot 70 \pm 0 \cdot 36$
$\mathrm{O}-\mathrm{T}(3)-\mathrm{O}$ angles	$\mathrm{O}(3)-\mathrm{T}(3)-\mathrm{O}(4)$	$114 \cdot 44 \pm 0 \cdot 34$
$[\mathrm{~T}(3)$ tetrahedron]	$\mathrm{O}(3)-\mathrm{T}(3)-\mathrm{O}(6)$	$103 \cdot 54 \pm 0 \cdot 34$
	$\mathrm{O}(3)-\mathrm{T}(3)-\mathrm{O}\left(2^{\prime}\right)$	$112 \cdot 93 \pm 0 \cdot 34$
	$\mathrm{O}(4)-\mathrm{T}(3)-\mathrm{O}(6)$	$113.98 \pm 0 \cdot 36$
	$\mathrm{O}(4)-\mathrm{T}(3)-\mathrm{O}\left(2^{\prime}\right)$	$107 \cdot 16 \pm 0 \cdot 33$
	$\mathrm{O}(6)-\mathrm{T}(3)-\mathrm{O}\left(2^{\prime}\right)$	$104 \cdot 44 \pm 0 \cdot 32$
	$\mathrm{~T}(1)-\mathrm{O}(1)-\mathrm{T}\left(1^{\prime}\right)$	$156 \cdot 91 \pm 0 \cdot 45$
$\mathrm{~T}-\mathrm{O}-\mathrm{T}$ angles	$\mathrm{T}(2)-\mathrm{O}(2)-\mathrm{T}\left(3^{\prime}\right)$	$138 \cdot 85 \pm 0 \cdot 40$
	$\mathrm{~T}(3)-\mathrm{O}(3)-\mathrm{T}\left(2^{\prime}\right)$	$145 \cdot 23 \pm 0 \cdot 44$
	$\mathrm{~T}(2)-\mathrm{O}(4)-\mathrm{T}(3)$	$145 \cdot 05 \pm 0 \cdot 44$
	$\mathrm{~T}(1)-\mathrm{O}(5)-\mathrm{T}\left(2^{\prime}\right)$	$135 \cdot 56 \pm 0.46$
	$\mathrm{~T}(3)-\mathrm{O}(6)-\mathrm{T}\left(1^{\prime}\right)$	$136 \cdot 19 \pm 0 \cdot 47$

1971; Burley, 1973a) than those refined in $I 4 / m$. The Al occupancy of each (Si, Al) tetrahedral site was estimated as follows (Smith \& Bailey, 1963).
meionite content increases, the rate of increase of $\mathrm{Al}-\mathrm{O}-\mathrm{Al}$ linkages will be greater when every additional Al atom enters the (type 2) ring to replace Si, than when the additional Al enters the (type 1) ring [i.e., $\mathrm{T}(\mathrm{l})$ sites]. Therefore, the structure based on $P 4_{2} / n$ is preferred as far as the number of $\mathrm{Al}-\mathrm{O}-\mathrm{Al}$ linkages in the whole structure and the refinement results are concerned

A Hamilton statistical test is not applicable in this special case to determine the better structure, since it is well known that every statistical test is only based on the assumption of random errors in the data (Hamilton, 1965). Further, the authors have failed to refine the structure in $P 4_{2} / n$ by ignoring those unobserved ($h+k+l=$ odd) reflexions. On the other hand, to exclude the likely systematic presence of the ($h+k+l=$ odd) reflexions and refine in $I 4 / m$ (or $P 4_{2} / n$) is likely to constitute a systematic error. The least-squares refinement based on $I 4 / \mathrm{m}$ by ignoring the unobserved ($h+k+l$ odd) reflexions also tends to give lower temperature factors for the $(\mathrm{Si}, \mathrm{Al})$ sites and some oxygen atoms, a higher R value and a (type 2) ring with more than $50 \% \mathrm{Al}$ occupancy when compared with those refined in $P 4_{2} / n$. It is thought that the abnormally low and negative temperature factors, a higher R value (15.7%) and a (type 2) ring having $52 \% \mathrm{Al}$ occupancy, present in the model of Papike \& Stephenson (1966) have partly resulted from a refinement in the space group $I 4 / m$.

(a) Based on space group $14 / m$.			
Tetrahedral ring	Tetrahedral sites	$\begin{aligned} & \text { Mean }(\mathrm{Si}, \mathrm{Al})-\mathrm{O} \\ & \text { distance }(\AA) \end{aligned}$	Aluminum occupancy (\%)
Type 1	$(\mathrm{Si}, \mathrm{Al})(1)=\mathrm{T}(1)$	1.639	21
Type 2	$(\mathrm{Si}, \mathrm{Al})(2)=\mathrm{T}(2)$	1.687	55
(b) Based on space group $P 4_{2} / n$.			
Tetrahedral ring	Tetrahedral sites	$\begin{aligned} & \text { Mean }(\mathrm{Si}, \mathrm{Al})-\mathrm{O} \\ & \text { distance }(\AA) \end{aligned}$	Aluminum occupancy (\%)
Type 1	$(\mathrm{Si}, \mathrm{Al})(1)=\mathrm{T}(1)$	1.653	$30 \cdot 7$
Type 2	$\left\{\begin{array}{l}(S i, A l) \\ (2)=T(2)\end{array}\right.$	1.681	$50 \cdot 7$
Type 2	$\{(\mathrm{Si}, \mathrm{Al})(3)=\mathrm{T}(3)$	1.679	$49 \cdot 3$

In contrast to the situation in the NaCl -rich scapolite (Lin \& Burley, 1973a) in which Al only enters $\mathrm{T}(2)$ and $\mathrm{T}(3)$ sites, Al in this CaCO_{3}-rich scapolite is located on all three tetrahedral sites. This may be explained by the fact that the CaCO_{3}-rich scapolite has a higher ratio of $\mathrm{Al} / \mathrm{Si}$ (Deer, Howie \& Zussman, 1963), and requires the average value of Al occupancies of $\mathrm{T}(2)$ and $\mathrm{T}(3)$ sites in the (type 2) ring to be greater than 50%, thus inevitably forming a larger number of unstable Al-OAl linkages (Loewenstein, 1954) than if $T(1)$ are partially occupied by Al to restrict the Al occupancy of (type 2) ring to not more than 50%. Of course $\mathrm{Al}-\mathrm{O}-\mathrm{Al}$ linkages will still form in the 5 -membered (Si, Al)tetrahedra rings in the structure, but the total number of such linkages will be fewer in the whole structure ($c f$. figure in Lin \& Burley, 1973a). In other words, after the $\mathrm{Al} \%$ of (type 2) ring reaches 50% as the

This research was supported by the National Research Council and the Geological Survey of Canada.

References

Deer, W. A., Howie, R. A. \& Zussman, J. (1963). Rock Forming Minerals, 4, 321-337. London: Longmans.
Hamilton, W. C. (1955). Acta Cryst. 8, 185-186.
Hamilton, W. C. (1965). Acta Cryst. 18, 502-510.
Lin, S. B. (1971). Ph. D. thesis, McMaster Univ. Canada. Lin, S. B. \& Burley, B. J. (1971). Geol. Soc. Amer. Abstr. with Programs, 3, 634.
Lin, S. B. \& Burley, B. J. (1973a). Acta Cryst. B29, 000000.

Lin, S. B. \& Burley, B. J. (1973b). Tschermaks Mineral. Petrogr. Mitt. To be published.
Loewenstein, W. (1954). Amer. Min. 39, 92-96.
Papike, J. J. \& Stephenson, N. C. (1966). Amer. Min. 51, 1014-1027.
Smith, J. V. \& Bailey, S. W. (1963). Acta Cryst. 16, 801-811.

